Respuesta :

Answer:

1.  ∠9 = 115°

2.  ∠10 = 65°

3.  ∠8 = 70°

4.  ∠3 = 70°

5. ∠4 = 110°

6. ∠11 = 70°

7. ∠5 = 65°

8. ∠14 = 115°

Step-by-step explanation:

Given that, two parallel lines and two transversal lines.

also given that, ∠1 = 115°   &    ∠12 = 110°

We know that, straight angle  = 180°

∠1 + ∠2 = 180°

∠2 = 180 - 115

∠2 = 65°

∠2 & ∠5 are vertical angles. So, they are same

∠2 = ∠5

∠5 = 65°

Similarly, ∠1 = ∠6 (vertical angles)

∠6 = 110°

Now given that, ∠12 = 110°

∠11 + ∠12 = 180°

∠11  = 180 -110

∠11 = 70°

∠11  &  ∠16 are vertical angles.

∠11  = 16

∠16 = 70°

∠12   =   ∠15  (vertical angle)

∠15  = 110°

∠4  & 12 are Corresponding Angles

∠12  = ∠4

∠4 = 110°

∠3 = 180 - ∠4 = 180 - 110

∠3 = 70°

∠7 = ∠4   (vertical angle)

∠7 = 110°

∠3 = ∠8 (vertical angle)

∠8 = 70°

∠1 = ∠9    (Corresponding Angles )

∠9 = 115°

∠10 = ∠2  (Corresponding Angles )

∠10 = 65°

∠13 = ∠10  (vertical angle)

∠13 = 65°

∠14 = ∠9  (vertical angle)

∠14 = 115°

9.  ∠7 and ∠2  no relation between them.

10. ∠6 and ∠14  are corresponding angles.

11. ∠13 and ∠12 no relation.

12. ∠7 and ∠11 are Consecutive Interior Angles

13.  ∠1 and ∠8 no relation.


Q&A Education