Respuesta :

Answer:  The roots of the given polynomial are

[tex]x=\dfrac{-5+i\sqrt{19}}{2},~~\dfrac{-5-i\sqrt{19}}{2}.[/tex]

Step-by-step explanation:  We are given to find the two values of x that are the roots of the following quadratic polynomial:

[tex]P(x)=x^2+5x+11.[/tex]

To find the roots, we must have

[tex]P(x)=0\\\\\Rightarrow x^2+5x+11=0~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

We know that

the solution set of quadratic equation of the form [tex]ax^2+bx+c=0,~a\neq 0[/tex] is given by

[tex]x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}.[/tex]

From equation (i), we have

a = 1,  b = 5   and   c = 11.

Therefore, the solution of equation (i) is given by

[tex]x\\\\\\=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\\\\\=\dfrac{-5\pm\sqrt{5^2-4\times1\times 11}}{2\times 1}\\\\\\=\dfrac{-5\pm\sqrt{25-44}}{2}\\\\\\=\dfrac{-5\pm\sqrt{-19}}{2}\\\\\\=\dfrac{-5\pm i\sqrt{19}}{2}.[/tex]

Thus, the roots of the given polynomial are

[tex]x=\dfrac{-5+i\sqrt{19}}{2},~~\dfrac{-5-i\sqrt{19}}{2}.[/tex]

Q&A Education