ABCD is a trapezoid (AD∥ BC). BC = 5 cm, m∠ACD = m∠ABC = 90°, m∠BAC = 30°. Find the length of AD (the picture is not drawn to scale).
Answer:
[tex]AD=20\ cm[/tex]
Step-by-step explanation:
step 1
Find the length of AC
In the right triangle ABC
[tex]sin(<BAC)=\frac{BC}{AC}[/tex]
we have
[tex]m<BAC=30\°[/tex]
[tex]BC=5\ cm[/tex]
substitute and solve for AC
[tex]sin(30\°)=\frac{5}{AC}[/tex]
[tex]0.5=\frac{5}{AC}[/tex]
[tex]AC=10\ cm[/tex]
step 2
Find the length side AD
In the right triangle ACD
[tex]cos(<CAD)=\frac{AC}{AD}[/tex]
we have
[tex]m<CAD=90\°-30\°=60\°[/tex]
[tex]AC=10\ cm[/tex]
substitute and solve for AD
[tex]cos(60\°)=\frac{10}{AD}[/tex]
[tex]0.5=\frac{10}{AD}[/tex]
[tex]AD=20\ cm[/tex]