Respuesta :

Answer:

Part a) The runner is travelling at [tex]20\ \frac{ft}{sec}[/tex]

Part b) The runner's speed is [tex]13.6\ \frac{mi}{h}[/tex]

Step-by-step explanation:

The complete question in the attached figure

Part a) we know that

The speed is equal to divide the distance by the time

Let

s ----> the speed

x ----> the distance

y ---> the time

[tex]s=\frac{x}{y}[/tex]

we have

[tex]x=100\ yd\\y=15\ sec[/tex]

Remember that

[tex]1\ yd=3\ ft[/tex]

Convert yards to feet

[tex]x=100\ yd=100(3)=300\ ft[/tex]

Find the speed

[tex]s=\frac{300}{15}[/tex]

[tex]s=20\ \frac{ft}{sec}[/tex]

Part b) we know that

[tex]1\ mi=5,280\ ft[/tex]

[tex]1\ h=3,600\ sec[/tex]

we have

[tex]x=300\ ft[/tex]

[tex]y=15\ sec[/tex]

Convert feet to miles

[tex]x=300\ ft=300/5,280\ mi[/tex]

Convert seconds to hours

[tex]y=15\ sec=15/3,600\ h[/tex]

substitute

[tex]s=\frac{x}{y}[/tex]

[tex]s=\frac{(300/5,280)}{(15/3,600)}[/tex]

[tex]s=\frac{300*3,600}{5,280*15}=\frac{1,080,000}{79,200}=13.6\ \frac{mi}{h}[/tex]

Ver imagen calculista
Q&A Education