Respuesta :

Answer:

Part 1) [tex]x\geq10[/tex]

Part 2) [tex]m\leq -9[/tex]  

Part 3) [tex]p\geq 5[/tex]

Part 4) [tex]x<-10[/tex]  

Part 5) [tex]b<-10[/tex]

Part 6)   [tex]n<5[/tex]

Part 7)  [tex]n <6[/tex]

Part 8) [tex]r\leq 4[/tex]

Part 9) [tex]x\geq 7[/tex]

Part 10) [tex]p\leq 0[/tex]

Part 11) [tex]x<1[/tex]

Part 12) [tex]a > 24[/tex]

Step-by-step explanation:

Part 1) [tex]2x+4\geq24[/tex]  

Subtract 4 both sides

[tex]2x\geq24-4[/tex]

[tex]2x\geq20[/tex]

Divide by 2 both sides

[tex]x\geq10[/tex]

the solution is the interval ------> [10,∞)

The solution is the shaded area to the right of the solid line at number 10 (closed circle).

see the attached figure  

Part 2) [tex]\frac{m}{3}-3\leq -6[/tex]  

Adds 3 both sides

[tex]\frac{m}{3}\leq -6+3[/tex]  

[tex]\frac{m}{3}\leq -3[/tex]  

Multiply by 3 both sides

[tex]m\leq -9[/tex]  

the solution is the interval ------> (-∞,-9]

The solution is the shaded area to the left of the solid line at number -9 (closed circle).

see the attached figure  

Part 3) [tex]-3(p+1)\leq -18[/tex]  

applying the distributive property left side

[tex]-3p-3\leq -18[/tex]  

adds 3 both sides

[tex]-3p\leq -18+3[/tex]  

[tex]-3p\leq -15[/tex]  

Multiply by -1 both sides

[tex]3p\geq 15[/tex]

Divide by 3 both sides

[tex]p\geq 5[/tex]

the solution is the interval ------> [5,∞)

The solution is the shaded area to the right of the solid line at number 5 (closed circle).

see the attached figure

Part 4) [tex]-4(-4+x)>56[/tex]  

applying the distributive property left side  

[tex]16-4x>56[/tex]  

Subtract 16 both sides  

[tex]-4x>56-16[/tex]  

[tex]-4x>40[/tex]  

Multiply by -1 both sides

[tex]4x<-40[/tex]  

Divide by 4 both sides

[tex]x<-10[/tex]  

the solution is the interval ------> (-∞,-10)

The solution is the shaded area to the left of the dashed line at number -10 (open circle).

see the attached figure

Part 5) [tex]-b-2>8[/tex]

adds 2 both sides

[tex]-b>8+2[/tex]

[tex]-b>10[/tex]

Multiply by -1 both sides

[tex]b<-10[/tex]

the solution is the interval ------> (-∞,-10)

The solution is the shaded area to the left of the dashed line at number -10 (open circle).

Part 6) [tex]-4(3+n)>-32[/tex]

applying the distributive property left side  

[tex]-12-4n>-32[/tex]

adds 12 both sides

[tex]-4n>-32+12[/tex]

[tex]-4n>-20[/tex]

multiply by -1 both sides

[tex]4n<20[/tex]

divide by 4 both sides

[tex]n<5[/tex]

the solution is the interval ------> (-∞,5)

The solution is the shaded area to the left of the dashed line at number 5 (open circle).

see the attached figure

Part 7) [tex]4+\frac{n}{3} <6[/tex]

Subtract 4 both sides

[tex]\frac{n}{3} <6-4[/tex]

[tex]\frac{n}{3} <2[/tex]

Multiply by 3 both sides

[tex]n <6[/tex]

the solution is the interval ------> (-∞,6)

The solution is the shaded area to the left of the dashed line at number 6 (open circle).

see the attached figure  

Part 8) [tex]-3(r-4)\geq 0[/tex]

applying the distributive property left side

[tex]-3r+12\geq 0[/tex]

subtract 12 both sides

[tex]-3r\geq -12[/tex]    

divide by -1 both sides

[tex]3r\leq 12[/tex]

divide by 3 both sides

[tex]r\leq 4[/tex]

the solution is the interval ------> (-∞,4]

The solution is the shaded area to the left of the solid line at number 4 (closed circle).

see the attached figure  

Part 9) [tex]-7x-7\leq -56[/tex]  

Adds 7 both sides

[tex]-7x\leq -56+7[/tex]

[tex]-7x\leq -49[/tex]

Multiply by -1 both sides

[tex]7x\geq 49[/tex]

Divide by 7 both sides

[tex]x\geq 7[/tex]  

the solution is the interval ------> [7,∞)

The solution is the shaded area to the right of the solid line at number 7 (closed circle).

see the attached figure  

Part 10) [tex]-3(p-7)\geq 21[/tex]  

applying the distributive property left side

[tex]-3p+21\geq 21[/tex]  

subtract 21 both sides

[tex]-3p\geq 21-21[/tex]  

[tex]-3p\geq 0[/tex]  

Multiply by -1 both sides

[tex]3p\leq 0[/tex]

[tex]p\leq 0[/tex]

the solution is the interval ------> (-∞,0]

The solution is the shaded area to the left of the solid line at number 0 (closed circle).

see the attached figure  

Part 11)  [tex]-11x-4> -15[/tex]

Adds 4 both sides

[tex]-11x> -15+4[/tex]

[tex]-11x> -11[/tex]

Multiply by -1 both sides

[tex]11x<11[/tex]

Divide by 11 both sides

[tex]x<1[/tex]

the solution is the interval ------> (-∞,1)

The solution is the shaded area to the left of the dashed line at number 1 (open circle).

see the attached figure

Part 12) [tex]\frac{-9+a}{15}>1[/tex]  

Multiply by 15 both sides

[tex]-9+a > 15[/tex]

Adds 9 both sides

[tex]a > 15+9[/tex]

[tex]a > 24[/tex]

the solution is the interval ------> (24,∞)

The solution is the shaded area to the right of the dashed line at number 24 (open circle).

see the attached figure

Ver imagen calculista
Ver imagen calculista
Ver imagen calculista