Solve for x in the equation x² + 2x + 1 = 17.
Answer: Second option.
Step-by-step explanation:
1. To solve this problem you can applly the quadratic formula, which is shown below:
[tex]x=\frac{-b+/-\sqrt{b^{2}-4ac}}{2a}[/tex]
2. The quadratic equation is:
[tex]x^{2}+2x+1-17=0\\x^{2}+2x-16=0[/tex]
3. Then:
a=1
b=2
c=-16
4. Therefore, when you substitute these values into the quadratic formula, you obtain the following result:
[tex]x=\frac{-2+/-\sqrt{(2)^{2}-4(1)(-16)}}{2(1)}[/tex]
x=-1±√17
Answer:
option A). x = [-1 ± √15] is the correct answer
Step-by-step explanation:
Formula:-
for a quadratic equation ax² + bx + 0 = 0
x = [-b ± √(b² - 4ac)]/2a
To find x
Here quadratic equation be, x² + 2x + 1 = 17
⇒ x² + 2x + 1 - 17 = 0
⇒ x² + 2x - 16 = 0
a = 1, b = 2 and c -16
x = [-b ± √(b² - 4ac)]/2a
x = [-2 ± √(2² - 4*1*(-16))]/2*1
x = [-2 ± √(4 -64)]/2
x = [-2 ± √(60)]/2
x = [-2 ± 2√15]/2
x = [-1 ± √15]
Therefore option A). x = [-1 ± √15] is the correct answer