Respuesta :

Answer: Second option.


Step-by-step explanation:

 1. To solve this problem you can applly the quadratic formula, which is shown below:

 [tex]x=\frac{-b+/-\sqrt{b^{2}-4ac}}{2a}[/tex]

2. The quadratic  equation is:

[tex]x^{2}+2x+1-17=0\\x^{2}+2x-16=0[/tex]

3. Then:

a=1

b=2

c=-16

4. Therefore, when you substitute these values into the quadratic formula, you obtain the following result:

[tex]x=\frac{-2+/-\sqrt{(2)^{2}-4(1)(-16)}}{2(1)}[/tex]

x=-1±√17


Answer:

option A). x = [-1 ± √15] is the correct answer

Step-by-step explanation:

Formula:-

for a quadratic equation ax² + bx + 0 = 0

x = [-b ± √(b² - 4ac)]/2a

To find x

Here  quadratic equation be,  x² + 2x + 1 = 17

⇒  x² + 2x + 1 - 17 = 0

⇒   x² + 2x - 16 = 0

a = 1, b = 2 and  c -16

x = [-b ± √(b² - 4ac)]/2a

x = [-2 ± √(2² - 4*1*(-16))]/2*1

x = [-2 ± √(4 -64)]/2

x = [-2 ± √(60)]/2

x = [-2 ± 2√15]/2

x = [-1 ± √15]

Therefore option A). x = [-1 ± √15] is the correct answer

Q&A Education