Respuesta :

Answer:

[tex]\boxed{(7-5x)(49+35x+25x^2)}[/tex]

Step-by-step explanation:

These are the steps you must follow to solve this problem:

Step 1:

We can write [tex]125=5^3[/tex] and [tex]343=7^3[/tex] so:

[tex]343-125x^3=(7^3-5^3x^3)[/tex]

Step 2:

We can arrange this as follows:

[tex]343-125x^3=[7^3-(5x)^3][/tex]

Step 3:

So we can use difference of cubes formula:

[tex](a^3-b^3)=(a-b)(a^2+ab+b^2)[/tex]

So:

[tex]a=7 \\ \\ b=5x[/tex]

Therefore:

[tex]343-125x^3=(7-5x)[(7)^2+(7)(5x)+(5x)^2][/tex]

[tex]343-125x^3=(7-5x)(49+35x+25x^2)[/tex]

Q&A Education