bm42400
contestada

Q1: Identify the graph of the equation and write an equation of the translated or rotated graph in general form.

Q1 Identify the graph of the equation and write an equation of the translated or rotated graph in general form class=

Respuesta :

Answer:

C. hyperbola; [tex]9x^2-25y^2-250y-850=0[/tex]

Step-by-step explanation:

The given conic has equation:

[tex]9x^2-25y^2=225[/tex]

Divide through by 225.

[tex]\frac{9x^2}{225}-\frac{25y^2}{225}=\frac{225}{225}[/tex]

[tex]\frac{x^2}{25}-\frac{y^2}{9}=1[/tex]

This is a hyperbola centered at the origin.

The hyperbola has been translated from the origin to (0,5).

The translated hyperbola will have equation;

[tex]\frac{(x-0)^2}{25}-\frac{(y-5)^2}{9}=1[/tex]

Multiply through by 225.

[tex]9(x-0)^2-25(y-5)^2=225[/tex]

Expand

[tex]9x^2-25(y^2-10y+25)=225[/tex]

[tex]9x^2-25y^2+250y-625=225[/tex]

Rewrite in general form;

[tex]9x^2-25y^2+250y-625-225=0[/tex]

[tex]9x^2-25y^2+250y-850=0[/tex]