Answer:
[tex]\bf A=\frac{7}{13},B = 9,C=13,D=\frac{63}{182},E=\frac{5}{14},F=\frac{15}{91}\textbf{ and }G=RED[/tex]
Step-by-step explanation:
Number of red balls in bag 1 = 5
Number of blue balls in bag 1 = 9
[tex]\text{So, Probability of drawing red ball = }\frac{5}{14}\\\\\text{Probability of drawing blue ball = }\frac{9}{14}[/tex]
So, On comparing with the tree diagram :
[tex]B = 9\text{ and }E=\frac{5}{14}[/tex]
Number of red balls in bag 2 = 6
Number of blue balls in bag 2 = 7
[tex]\text{So, Probability of drawing red ball = }\frac{6}{13}\\\\\text{Probability of drawing blue ball = }\frac{7}{13}[/tex]
[tex]Now, D = \frac{7}{13}\times\frac{9}{14}=\frac{63}{182}[/tex]
[tex]And, F = \frac{6}{13}\times\frac{5}{14}=\frac{15}{91}[/tex]
[tex]\bf A=\frac{7}{13},B = 9,C=13,D=\frac{63}{182},E=\frac{5}{14},F=\frac{15}{91}\textbf{ and }G=RED[/tex]