Respuesta :
Answer:
[tex]\large\boxed{A)\ u^2-11u+24=0}[/tex]
Step-by-step explanation:
[tex](x^2-1)^2 -11(x^2-1)+24=0\\\\\text{Substitute}\ (x^2-1)=u\\\\\underbrace{(x^2-1)}_{u}\ ^2 -11\underbrace{(x^2-1)}_{u}+24=0\to u^2-11u+24=0[/tex]
Answer: The correct option is
(A) [tex]u^2-11u+24=0,~~\textup{where }u=(x^2-1).[/tex]
Step-by-step explanation: We are given to select the correct quadratic equation that is equivalent to the following equation :
[tex](x^2-1)^2-11(x^2-1)+24=0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]
Let us consider that
[tex]u=x^2-1.[/tex]
Substituting the value of u in equation (i), we get
[tex](x^2-1)^2-11(x^2-1)+24=0\\\\\Rightarrow u^2-11u+24=0.[/tex]
Thus, the required equivalent quadratic equation is
[tex]u^2-11u+24=0,~~\textup{where }u=(x^2-1).[/tex]
Option (A) is CORRECT.