Respuesta :

Answer:

C, and D are both roots of this equation

Answer:

The two values of x that are roots are:

[tex]x_{1} = \frac{-3 + \sqrt{21} }{2}[/tex]

[tex]x_{2} = \frac{-3 - \sqrt{21} }{2}[/tex]

Step-by-step explanation:

A cuadratic function has the form [tex]ax^{2} + bx +c = 0[/tex]

To calculate the roots of the cuadratic equation [tex]x^{2} + 3x -3 = 0[/tex] you have to solve the formula:

[tex]x = \frac{-b}{2a}[/tex] ±[tex]\frac{\sqrt{b^{2} -4ac} }{2a}[/tex]

In this case, a =1, b=3 and c= -3

Replacing the values of a,b and c in the formula:

[tex]x = \frac{-3}{(2)(1)}[/tex] ± [tex]\frac{\sqrt{(3)^{2} - (4)(1)(-3) } }{(2)(1)}[/tex]

Solving the mathematic operations:

x = [tex]\frac{-3}{2}[/tex] ± [tex]\frac{\sqrt{9 + 12 } }{2}[/tex]

The two roots are:

[tex]x_{1} = \frac{-3 + \sqrt{21} }{2}[/tex]

[tex]x_{2} = \frac{-3 - \sqrt{21} }{2}[/tex]

Q&A Education