Respuesta :

Answer:

4(3n+2) or 12n+8

Step-by-step explanation:

Given expression is:

[tex](\frac{8}{6n-4})(9n^{2}-4)[/tex]

The numerator of the fraction will be multiplied with 9n^2- 4

So, Multiplication will give us:

[tex]=\frac{8(9n^2-4)}{6n-4}[/tex]

We can simplify the expression before multiplication.

The numerator will be broken down using the formula:

[tex]a^2 - b^2 = (a+b)(a-b)\\So,\\= \frac{8[(3n)^2 - (2)^2]}{6n-4}\\ = \frac{8(3n-2)(3n+2)}{6n-4}[/tex]

We can take 2 as common factor from denominator

[tex]=\frac{8(3n-2)(3n+2)}{2(3n-2)}\\After\ cutting\\= 4(3n+2)[/tex]

Hence the product is 4(3n+2) or 12n+8 ..

Answer: 1 and the second part is 12n+8

Step-by-step explanation:Edgen2020