Answer:
The frequencies of the two lines are:
a) [tex]3.79\times 10^{14} s^{-1}[/tex]
b)[tex]7.14\times 10^{14} s^{-1}[/tex]
When we heat rubidium compound we will see red color.
Explanation:
[tex]\nu=\frac{c}{\lambda }[/tex]
c = speed of light
[tex]\lambda [/tex] = wavelength of light
a) Frequency of the light when wavelength is equal to [tex]7.9\times 10^{-7} m[/tex]
[tex]\nu=\frac{c}{\lambda }[/tex]
[tex]\nu=\frac{3\times 10^8m/s)}{7.9\times 10^{-7}}[/tex]
[tex]\nu=3.79\times 10^{14} s^{-1}[/tex]
This frequency corresponds to red light
b) Frequency of the light when wavelength is equal to [tex]4.2\times 10^{-7} m[/tex]
[tex]\nu=\frac{c}{\lambda }[/tex]
[tex]\nu=\frac{3\times 10^8m/s)}{4.2\times 10^{-7}}[/tex]
[tex]\nu=7.14\times 10^{14} s^{-1}[/tex]
This frequency corresponds to violet light
When we heat rubidium compound we will see red color.