The half-life of krypton-91 (91Kr) is 10 s. At time t = 0 a heavy canister contains 7 g of this radioactive gas. (a) Find a function m(t) = m02−t/h that models the amount of 91Kr remaining in the canister after t seconds

Respuesta :

Answer:

misteri Cell ini quest ia half-life of beauty of misteri best, of Cell can't answer =

Explanation:

[tex] \sqrt[ \geqslant { { | \geqslant | \geqslant \sqrt[ \gamma \% log_{ \tan( \sqrt[ < \pi \sqrt[ | \geqslant \sqrt[ < \leqslant |x| ]{y} | \times \frac{?}{?} ]{?} ]{?} ) }(?) ]{?} | | }^{2} }^{?} ]{ \sqrt[ < \gamma log_{ \frac{ | \geqslant y \sqrt[ |x \sqrt{ |?| } | ]{?} | }{?} }(?) ]{?} } [/tex]

Q&A Education