A particle moves along the curve y=1+x3‾‾‾‾‾‾√. As it reaches the point (2,3), the y-coordinate is increasing at the rate of 4 cm/s. How fast is the x-coordinate of the point changing at this instant?

Respuesta :

Answer:

x-coordinate is changing by 2 cm/s

Step-by-step explanation:

Given equation of the curve,

[tex]y=\sqrt{1+x^3}-----(1)[/tex]

Differentiating with respect to t ( time ),

[tex]\frac{dy}{dt} =\frac{3x^2}{2} \frac{1}{\sqrt{1+x^3}}\frac{dx}{dt}[/tex]

[tex]\frac{dy}{dt}=\frac{3x^2}{2y}\frac{dx}{dt}[/tex] ( From equation (1) ),

We have given,

[tex]\frac{dy}{dt}[/tex]=4 cm/s and x = 2, y = 3,

[tex]4=\frac{3(2)^2}{2(3)}\frac{dx}{dt}[/tex]

[tex]4=\frac{12}{6}\frac{dx}{dt}[/tex]

[tex]4=2\frac{dx}{dt}[/tex]

[tex]\implies \frac{dx}{dt}=\frac{4}{2}=2\text{ cm per sec}[/tex]

The x-coordinate of the point is changing at 2cm/s this instant

Given the function;

[tex]y=\sqrt{1+x^3}[/tex]

The rate of change of the function is expressed as:

[tex]\frac{dy}{dt} =\frac{dy}{dx} \times \frac{dx}{dt}[/tex]

Get the differential of y with respect to x:

[tex]y = (1+x^3)^{\frac{1}{2} }\\\frac{dy}{dx} = \frac{1}{2} (1+x^3) ^{-1/2} \times 3x^2\\\frac{dy}{dx} =\frac{3}{2}x^2(1+x^3)^{-1/2}\\\frac{dy}{dt}=\frac{3x^2}{2y}[/tex]

Substitute into the rate of change to have:

[tex]\frac{dy}{dt} =\frac{3x^2}{2y}\frac{dx}{dt}[/tex]

Given the following parameters:

[tex]\frac{dy}{dt} = 4cm/s\\x=2\\y=3[/tex]

Substitute into the rate of change formula to get dx/dt

[tex]\frac{dy}{dt} =\frac{3(2)^2}{2(3)} \times \frac{dx}{dt} \\4 = \frac{12}{6} \times\frac{dx}{dt} \\24 = 12\frac{dx}{dt}\\\frac{dx}{dt} = \frac{24}{12}\\\frac{dx}{dt} = 2cm/s[/tex]

Hence the x-coordinate of the point is changing at 2cm/s this instant

Learn more here: https://brainly.in/question/23637110

Q&A Education