Answer:
Efficiency = 52%
Explanation:
Given:
First stage
heat absorbed, Q₁ at temperature T₁ = 500 K
Heat released, Q₂ at temperature T₂ = 430 K
and the work done is W₁
Second stage
Heat released, Q₂ at temperature T₂ = 430 K
Heat released, Q₃ at temperature T₃ = 240 K
and the work done is W₂
Total work done, W = W₁ + W₂
Now,
The efficiency is given as:
[tex]\eta=\frac{\textup{Total\ work\ done}}{\textup{Energy\ provided}}[/tex]
or
Work done = change in heat
thus,
W₁ = Q₁ - Q₂
W₂ = Q₂ - Q₃
Thus,
[tex]\eta=\frac{(Q_1-Q_2)\ +\ (Q_2-Q_3)}{Q_1}}[/tex]
or
[tex]\eta=1-\frac{(Q_1-Q_3)}{Q_1}}[/tex]
or
[tex]\eta=1-\frac{(Q_3)}{Q_1}}[/tex]
also,
[tex]\frac{Q_1}{T_1}=\frac{Q_2}{T_2}=\frac{Q_3}{T_3}[/tex]
or
[tex]\frac{T_3}{T_1}=\frac{Q_3}{Q_1}[/tex]
thus,
[tex]\eta=1-\frac{(T_3)}{T_1}}[/tex]
thus,
[tex]\eta=1-\frac{(240\ K)}{500\ K}}[/tex]
or
[tex]\eta=0.52[/tex]
or
Efficiency = 52%