Answer:
(2.5,0)
Explanation:
The particle can be described by the following equations:
[tex]x=Rsin(-\omega t)+2.5\\y=Rcos(-\omega t)\\\frac{dx}{dt}=-\omega Rcos(-\omega t)\\\frac{dy}{dt}=\omega Rsin(-\omega t)\\\frac{d^2x}{dt^2}=-\omega^2Rsin(-\omega t)\\\frac{d^2y}{dt^2}=-\omega^2Rcos(-\omega t)[/tex]
For R = 2.5, ω = 2 and t = 0:
[tex]x=2.5\\y=2.5\\\\\frac{dx}{dt}=-5\\ \frac{d^2y}{dt^2}=-10[/tex]
The center of the circle would be at point (2.5,0)