Silver chloride, AgCl (Ksp = 1.8 x 10‒10), can be dissolved in solutions containing ammonia due to the formation of the soluble complex ion Ag(NH3)2 + (Kf = 1.0 x 108 ). What is the minimum amount of NH3 that would need to be added to dissolve 0.010 mol AgCl in 1.00 L of solution?

Respuesta :

Explanation:

The given reaction will be as follows.

           [tex]AgCl(s) \rightarrow Ag^{+}(aq) + Cl^{-}(aq)[/tex] ............. (1)

     [tex]K_{sp}[/tex] = [tex][Ag^{+}][Cl^{-}] = 1.8 \times 10^{-10}[/tex]

Reaction for the complex formation is as follows.

          [tex]Ag^{+}(aq) + 2NH_{3}(aq) \rightleftharpoons [Ag(NH_{3})_{2}]^{+}(aq)[/tex] ........... (2)

          [tex]K_{f}[/tex] = [tex]\frac{[Ag(NH_{3})_{2}]}{[Ag^{+}][NH_{3}]^{2}} = 1.0 \times 10^{8}[/tex]

When we add both equations (1) and (2) then the resultant equation is as follows.

             [tex]AgCl(s) + 2NH_{3}(aq) \rightarrow [Ag(NH_{3})_{2}]^{+}(aq) + Cl^{-}(aq)[/tex] ............. (3)

Therefore, equilibrium constant will be as follows.

                       K = [tex]K_{f} \times K_{sp}[/tex]

                          = [tex]1.0 \times 10^{8} \times 1.8 \times 10^{-10}[/tex]

                          = [tex]1.8 \times 10^{-2}[/tex]

Since, we need 0.010 mol of AgCl to be soluble in 1 liter of solution after after addition of [tex]NH_{3}[/tex] for complexation. This means we have to set

               [tex][Ag^{+}][/tex] = [tex][Cl^{-}][/tex]

                          = [tex]\frac{0.010 mol}{1 L}[/tex]

                          = 0.010 M

For the net reaction, [tex]AgCl(s) + 2NH_{3}(aq) \rightarrow [Ag(NH_{3})_{2}]^{+}(aq) + Cl^{-}(aq)[/tex]

Initial :                             0.010         x                     0                           0

Change :                    -0.010         -0.020             +0.010                +0.010

Equilibrium :                   0            x - 0.020           0.010                 0.010

Hence, the equilibrium constant expression for this is as follows.

              K = [tex]\frac{[Ag(NH_{3})^{+}_{2}][Cl^{-}]}{[NH_{3}]^{2}}[/tex]

     [tex]1.8 \times 10^{-2}[/tex] = [tex]\frac{0.010 \times 0.010}{(x - 0.020)^{2}}[/tex]

             x = 0.0945 mol      

or,          x = 0.095 mol (approx)

Thus, we can conclude that the number of moles of [tex]NH_{3}[/tex] needed to be added is 0.095 mol.