Respuesta :
Answer:
1) yes
2) No
3) No
4) yes
5) No
Step-by-step explanation:
1) f(0)=0, f(1)=1, f(2)=2, f(3)=3, then [tex]f[\{0, 1, 2, 3\}]=\{0, 1, 2, 3\}[/tex]
2) f(0)=0, [tex]1^2=1\equiv 1 \text{mod 4}[/tex], then f(1)=1; [tex]2^2=4\equiv 0 \text{ mod 4}[/tex], then f(2)=0; [tex]3^2=9\equiv 1 \text{mod 4}[/tex], then f(3)=1
Then [tex]f[\{0, 1, 2, 3\}]=\{0, 1, 3\}[/tex], this means that f isn't onto.
3.
- f(0)=0;
- [tex]1^1-1=0[/tex], then f(1)=0
- [tex]2^2-2=2[/tex], then f(2)=2
- [tex]3^2-3=6\equiv 2 \text{ mod 4}[/tex], then f(3)=2
Then [tex]f[\{0, 1, 2, 3\}]=\{0, 2\}[/tex], this means that f isn't onto.
4. [tex]f[\{0, 1, 2, 3\}]=\{0, 1, 2,3\}[/tex], then f is onto.
5. [tex]f[\{0, 1, 2, 3\}]=\{1, 2\}[/tex], this means that f isn't onto.