Answer:
The temperature of the gas is increasing 0.6577 kelvin/min
Step-by-step explanation:
We have to find the rate of change of T with respect to time at that instant so we should start by arranging the equation[tex]T=\frac{PV}{nR}[/tex]
Now we can derivate T to obtain T'
[tex]T'=\frac{(PV)'(nR)-(PV)(nR)'}{((nR)^{2} }[/tex]
Now we should solve the derivate of (PV) and (nR) by using the product rule
[tex]T'=\frac{(P'V+PV')(nR)-(PV)(n'R+nR')}{(nR)^{2} }[/tex]
We know that
P=8atm
V=13L
P'=0.14
V'=-0.16
n=10
R=0.0821
n'=0
R'=0
We substitute into the equation
[tex]T'=\frac{(0.14*13+8*-0.16)(10*0.0821)-(8*13)(0*0.0821+10*0)}{(10*0.0821)^{2} }[/tex]
[tex]T= 0.6577[/tex]