Respuesta :
Answer:
displacement is 41√2  m  and  45º; velocity  is 15 √2  m/s  and 315º and the acceleration is  0.786  m/s²  and 315º
Explanation:
a and b) Â Â The cyclist is at a distance east and then north, we can find the displacement using the Pythagorean theorem
        Â
         Xt² = X1² + X2²
         Xt = √(41² + 41²)
         Xt = 41 √2  m
The angle can be found by trigonometry
        tan θ = X1 / X2
        tan θ = 41/41 = 1
        θ = 45º
c and d) Â the velocities are also vector magnitudes, so they can be brought in the same way as the displacements
         V² = V1² + V2²
         V = √ V1² + V2²
         V = √[(-15)² + 15²
         V = 15 √2  m/s
         Tan θ = -15/15 = -1
        θ = -45º
This is (270+ 45) measured from the east counterclockwise   Â
        θ = 315º
E and f) Â Â the average accelerations
Let's calculate the value of acceleration, which is also a vector
          a = (Vf -Vo )/ t
The initial speed is directed south  is negative and the final speed is directed east is positive
        Â
           Vf = 15 m/s i^      θ = 0º
           Vo = -15 m/s j^     θ = 270º
           a = (15 i^ - (- 15) j^) / 27
           Â
cañculate the module
           a² = (Vf² + Vo²) / t²
           a = √ (15² + 15²) / 27
           a = 15 √2 /27
           a = 0.786  m/s²
           Â
The direction of acceleration is
            tan θ = ay / ax
            tan θ = -0.55 / 0.55  = -1
            θ = -45º
           Â
This is (270+ 45) measured from the east counterclockwise