Answer:
Explanation:
U(C, L) = (C – 100) × (L – 40)
(a) C = (w - t)[110 - L] + 320
C = 10[110 - L] + 320
C + 10L = 1420
where,
C- consumption
w - wages
t - taxes
L - Leisure
(b) Given that,
L = 100 then,
C = 420
[tex]MRS=\frac{MU_{L} }{MU_{C} }[/tex]
[tex]MRS=\frac{C-100 }{L-40}[/tex]
[tex]MRS=\frac{320}{60}[/tex]
= 5.33
(c) L = 110
C = 320
Reservation wage:
[tex]MRS=\frac{C-100 }{L-40}[/tex]
[tex]MRS=\frac{220}{70}[/tex]
= 3.14
(d) At optimal level,
[tex]\frac{C-100}{L-40}=\frac{10}{1}[/tex]
C - 100 = 10L - 400
C - 10L = -300
C = 10L - 300
Using budget constraint:
C + 10L = 1420
10L - 300 + 10L = 1420
20L = 1720
L* = 86 and C* = 560