Answer:
[tex]h\approx1.0443\,cm[/tex]
Explanation:
Given:
We know for rotational kinetic energy:
[tex]KE=\frac{1}{2} I.\omega^2[/tex].................................(1)
where:
I = mass moment of inertia for the given mass geometry
[tex]\omega[/tex]= angular velocity in radians per second,
Here,
[tex]I= \frac{1}{2} M.r^2[/tex]
∵[tex]mass=density\times volume[/tex]
[tex]I= \frac{1}{2} \times (8600\times \pi\times 0.27^2\times h)\times 0.27[/tex]
[tex]I=265.8947\times h[/tex]
Now,
[tex]\omega= \alpha\times t_f[/tex]
[tex]\omega=3\times8[/tex]
[tex]\omega=24 \,rad.s^{-1}[/tex]
∴Using eq. (1)
[tex]800=\frac{1}{2} \times (265.8947\times h)\times 24^2[/tex]
[tex]h\approx1.0443\,cm[/tex]