Answer:
a) The frequency of the eardrum's vibration is 732.62 Hz.
b) The maximum acceleration of the eardrum is 13.35 m/s².
Explanation:
a) The maximum speed of a vibration is given by:
[tex]V_{max}=A\times \omega=A\times2\pi f[/tex]
where:
A is the  amplitude of the wave
f is the frequency of the wave
Then,
[tex]V_{max}=A\times2\pi f\\f= \frac{V_{max}}{A\times 2\pi} \\f= \frac {2.9\times 10^{-3}\frac{m}{s}} {6.3\times 10^{-7}m\times2\pi }\\f=732.62 Hz[/tex]
b) The maximum acceleration of a vibration is given by:
[tex]a_{max}=A\times \omega^2=A\times(2\pi f)^2\\a_{max}=6.3\times 10^{-7}m \times (2\pi\times 732.62 s^{-1} )^2\\a_{max}= 13.35 \frac{m}{s^2}[/tex]