Respuesta :
Answer: Pn= 10000(1+ 0.03(11-n))
Step-by-step explanation:
From the question it is given that
Pn= 10000 + 3% of Dn eqn 1
Where Pn is payment at year n
And Dn is outstanding debt at year n
n= 1,2,3...,10
D1= 100000
D2=100000-10000
Dn=100000-10000(n-1) eqn2
Therefore, substituting eqn2 into eqn1
Pn= 10000+3% of (100000-10000(n-1))
Pn= 10000+ 0.03(100000 - 10000(n-1))
Pn= 10000(1+ 0.03(10 - (n-1)))
Pn= 10000(1+ 0.03(11-n))
The question is an illustration of annual compound interest.
The function of each payment is: [tex]\mathbf{P(n) = 13300 + 300n }[/tex]
The given parameter are:
[tex]\mathbf{Amount = 100000}[/tex]
[tex]\mathbf{Payment = 10000 + Rate \times Outstanding}[/tex]
[tex]\mathbf{Rate = 3\%}[/tex]
Represent the outstanding debt with D.
So, we have:
[tex]\mathbf{D_1 = 100000 - 10000 \times (1 - 1)}[/tex]
[tex]\mathbf{D_2 = 100000 - 10000 \times (2 - 1)}[/tex]
[tex]\mathbf{D_3 = 100000 - 10000 \times (3 - 1)}[/tex]
For the nth year, the outstanding debt would be
[tex]\mathbf{D_n = 100000 - 10000 \times (n - 1)}[/tex]
Recall that:
[tex]\mathbf{Payment = 10000 + Rate \times Outstanding}[/tex]
So, the equation becomes
[tex]\mathbf{Payment = 10000 + Rate \times (100000 - 10000 \times (n - 1))}[/tex]
Substitute [tex]\mathbf{Rate = 3\%}[/tex]
[tex]\mathbf{Payment = 10000 + 3\% \times (100000 - 10000 \times (n - 1))}[/tex]
[tex]\mathbf{Payment = 10000 + 3000 - 300 \times (n - 1)}[/tex]
[tex]\mathbf{Payment = 13000 - 300 \times (n - 1)}[/tex]
Open bracket
[tex]\mathbf{Payment = 13000 - 300n + 300}[/tex]
Collect like terms
[tex]\mathbf{Payment = 13000 + 300 - 300n }[/tex]
[tex]\mathbf{Payment = 13300 + 300n }[/tex]
Express as a function
[tex]\mathbf{P(n) = 13300 + 300n }[/tex]
Hence, the required function is:
[tex]\mathbf{P(n) = 13300 + 300n }[/tex]
Read more about compound interest at:
https://brainly.com/question/