Respuesta :
Explanation:
(A) Sum of forces on the projectile in the y direction:
-bv β mg = ma
Acceleration is the derivative of velocity with respect to time:
-bv β mg = m dv/dt
Separate the variables:
bv + mg = -m dv/dt
-1/m dt = 1/(bv + mg) dv
-b/m dt = b/(bv + mg) dv
Integrate:
-b/m t |βα΅ = ln(bv + mg) |βα΅
-b/m (t β 0) = ln(bv + mg) β ln(0 + mg)
-b/m t = ln(bv + mg) β ln(mg)
-b/m t = ln((bv + mg) / mg)
e^(-b/m t) = (bv + mg) / mg
bv + mg = mg e^(-b/m t)
bv = -mg + mg e^(-b/m t)
v = -mg/b (1 β e^(-b/m t))
Velocity is derivative of position with respect to time:
dz/dt = -mg/b (1 β e^(-b/m t))
Separate the variables:
-b/(mg) dz = (1 β e^(-b/m t)) dt
Integrate:
-b/(mg) z |α΅§αΆ» = (t + m/b e^(-b/m t)) |βα΅
-b/(mg) (z β h) = (t + m/b e^(-b/m t)) β (0 + m/b e^(0))
-b/(mg) (z β h) = t + m/b e^(-b/m t) β m/b
z β h = -mg/b (t + m/b e^(-b/m t) β m/b)
z = h β mg/b (t + m/b e^(-b/m t) β m/b)
(B) Repeat steps from part A, but this time in the x direction.
-bv = ma
-bv = m dv/dt
-b/m dt = 1/v dv
-b/m t |βα΅ = ln v |α΅₯α΅
-b/m (t β 0) = ln vβ β ln vββ
-b/m t = ln (vβ / vββ)
vβ / vββ = e^(-b/m t)
vβ = vββ e^(-b/m t)
dx/dt = vββ e^(-b/m t)
dx = vββ e^(-b/m t) dt
x |βΛ£ = -m/b vββ e^(-b/m t) |βα΅
x β 0 = -m/b vββ e^(-b/m t) β (-m/b vββ e^(0))
x = -m/b vββ e^(-b/m t) + m/b vββ
x = m/b vββ (1 β e^(-b/m t))
To find z(x), find t in terms of x then substitute into z(t).
b x / (m vββ) = Β 1 β e^(-b/m t)
e^(-b/m t) = 1 β b x / (m vββ)
-b/m t = ln(1 β b x / (m vββ))
t = -m/b ln(1 β b x / (m vββ))
z = h β mg/b (-m/b ln(1 β b x / (m vββ)) + m/b (1 β b x / (m vββ)) β m/b)
z = h β mg/b (-m/b ln(1 β b x / (m vββ)) + m/b β x / vββ β m/b)
z = h β mg/b (-m/b ln(1 β b x / (m vββ)) β x / vββ)
The range is when z = 0:
0 = h β mg/b (-m/b ln(1 β b x / (m vββ)) β x / vββ)
h = mg/b (-m/b ln(1 β b x / (m vββ)) β x / vββ)
bh/(mg) = -m/b ln(1 β b x / (m vββ)) β x / vββ
-(b/m)Β² h/g = ln(1 β (b/m) x / vββ) + (b/m) x / vββ
Unfortunately, this can't be simplified further without using something called the Lambert W function.
(C) The range of a projectile without air resistance launched horizontally from a height h is:
x = vββ β(2h/g)