The parent function f(x) = x^2 is reflected across the x-axis, vertically stretched by a factor of 4, and translated 5 units up to create g. Identify g in vertex form.

Respuesta :

Answer:

The vertex form is [tex]g(x)=-4x^2+5[/tex]

Step-by-step explanation:

Given : The parent function [tex]f(x)=x^2[/tex]

To reflect across the x-axis,

f(x) → - f(x)

[tex]f(x)=-x^2[/tex]

Vertically stretched by a factor of 4,

f(x) → a f(x)

[tex]f(x)=-4x^2[/tex]

Translated 5 units upward,

f(x) → f(x)+k

[tex]f(x)=-4x^2+5[/tex]

The required function is [tex]g(x)=-4x^2+5[/tex]

The general vertex form is [tex]g(x) =a(x - h)^2 + k[/tex]

Here, a=-4, h=0 and k=5