Answer:
1) 1023
2) 8
Step-by-step explanation:
1)
Given:
[tex]a_{n+1}=2\cdot a_n + 1[/tex] and [tex]a_1 = 1[/tex]
Then, the next table can be computed (only the first terms are explicitely shown)
n [tex]a_n[/tex]
1 1
2 [tex]a_{2}=2\cdot 1 + 1 =[/tex] 3
3 [tex]a_{3}=2\cdot 3 + 1 =[/tex]7
4 15
5 31
6 63
7 127
8 255
9 511
10 1023
2)
Given
[tex]t_n=n^2-2n[/tex]
Then, the next table can be computed
n [tex]t_n[/tex]
1 [tex]t_1=1^2-2(1) = [/tex]-1
2 [tex]t_2=2^2-2(2) = [/tex]0
3 [tex]t_3=3^2-2(3) = [/tex]3
4 [tex]t_4=4^2-2(4) = [/tex]8