Respuesta :

gmany

Answer:

[tex]\large\boxed{(x-8)^2+(y-6)^2=6^2\to(x-8)^2+(y-6)^2=36}[/tex]

Step-by-step explanation:

The standard form of an equation of a circle:

[tex](x-h)^2+(y-k)^2=r^2[/tex]

(h, k) - center

r - radius

We have the center (8, 6) → h = 8, k = 6,

and endpoints of a radius (8, 6) & (8, 0).

The formula of a distance between two points:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Substitute:

[tex]r=\sqrt{(0-6)^2+(8-8)^2}=\sqrt{(-6)^2+0^2}=\sqrt{36}=6[/tex]

Finally:

[tex](x-8)^2+(y-6)^2=6^2[/tex]

Q&A Education