Answer:
a) The present value of the bond is $2,439.47
b) If the coupon of the bond changes to 6%, the present value of the bond would be $960.53
Explanation:
Hi, in order to answer  the questions, we need to use the following formula.
[tex]Price=\frac{Coupon((1+Yield)^{n}-1) }{Yield(1+Yield)^{n} } +\frac{FaceValue}{(1+Yield)^{n} }[/tex]
Where:
Coupon = 0.18*$1,700= $306
Yield = Discount rate (in our case, 12% or 0.12)
n = years to maturity (in our case, 18)
Face Value = $1,700
So, to find the price of the bond today, everything should look like this:
[tex]Price=\frac{306((1+0.12)^{18}-1) }{0.12(1+0.12)^{18} } +\frac{1,700}{(1+0.12)^{18} }[/tex]
[tex]Price= 2,218.40 +221.07=2,439.47[/tex]
Therefore, the price is  $2,439.47 Â
Using the same equation, the answer to b) is
[tex]Price=\frac{102((1+0.12)^{18}-1) }{0.12(1+0.12)^{18} } +\frac{1,700}{(1+0.12)^{18} }[/tex]
[tex]Price= 960.53[/tex]
The answer to b) is $960.53
Best of luck.