Respuesta :

The coordinates of points C are:

[tex]x=\frac{31}{2} \ and \y=0 \\ \\ \\ C(\frac{31}{2},0)[/tex]

Explanation:

The figure related to this problem has been attached below. Here we have two points:

[tex]A(x_{1},x_{2})=A(5,0) \\ \\ B(x_{1},x_{2})=B(8,0)[/tex]

So we need to find the point C:

[tex]C(x,y)[/tex]

So we need to use the formula for externally division of a line segment as follows:

[tex](x_{2},y_{2})=( \frac {mx + nx_{1}}{m + n},\frac {my + ny_{1}}{m + n}  )[/tex]

[tex]Where: \\ \\ m:n=2:5[/tex]

So:

[tex](8,0)=( \frac {2x + 5(5)}{2 + 5},\frac {2y + 5(0)}{2 + 5}  ) \\ \\ \bullet \ \frac{2x+25}{7}=8 \\ \\ 2x+25=56 \\ \\ 2x=32 \\ \\ x=\frac{31}{2} \\ \\ \\  \bullet \ \frac{2y}{7}=0 \\ \\ y=0[/tex]

So the coordinates of points C are:

[tex]x=\frac{31}{2} \ and \y=0 \\ \\ \\ C(\frac{31}{2},0)[/tex]

Learn more:

Partition of segments: https://brainly.com/question/14096093

#LearnWithBrainly

Ver imagen danielmaduroh
Q&A Education