Respuesta :

Answer:

[tex]y=\frac{5}{9}x+\frac{-83}{9}[/tex]

Step-by-step explanation:

Given equation of line:

[tex]9x+5y=3[/tex]

To find the equation of line perpendicular to the line of the given equation and passes through point (4,-7).

Writing the given equation of line in standard form.

Subtracting both sides by [tex]9x[/tex]

[tex]9x-9x+5y=3-9x[/tex]

[tex]5y=3-9x[/tex]  

Dividing both sides by 5.

[tex]\frac{5y}{5}=\frac{3}{5}-\frac{9x}{5}[/tex]  

[tex]y=\frac{3}{5}-\frac{9x}{5}[/tex]  

Rearranging the equation in standard form [tex]y=mx+b[/tex]

[tex]y=-\frac{9x}{5}+\frac{3}{5}[/tex]  

Applying slope relationship between perpendicular lines.

[tex]m_1=-\frac{1}{m_2}[/tex]

where [tex]m_1[/tex] and [tex]m_2[/tex] are slopes of perpendicular lines.

For the given equation in the form [tex]y=mx+b[/tex] the slope [tex]m_2[/tex]can be found by comparing [tex]y=-\frac{9x}{5}+\frac{3}{5}[/tex] with standard form.

∴ [tex]m_2=-\frac{9}{5}[/tex]

Thus slope of line perpendicular to this line [tex]m_1[/tex] would be given as:

[tex]m_1=-\frac{1}{-\frac{9}{5}}[/tex]

∴ [tex]m_1=\frac{5}{9}[/tex]

The line passes through point (4,-7)

Using point slope form:

[tex]y-y_1=m(x-x_1)[/tex]

Where [tex](x_1,y_1)\rightarrow (4,-7)[/tex] and [tex]m=m_1=\frac{5}{9}[/tex]

So,

[tex]y-(-7)=\frac{5}{9}(x-4)[/tex]

Using distribution.

[tex]y+7=(\frac{5}{9}x)-(\frac{5}{9}\times 4)[/tex]

[tex]y+7=\frac{5}{9}x-\frac{20}{9}[/tex]

Subtracting 7 to both sides.

[tex]y+7-7=\frac{5}{9}x-\frac{20}{9}-7[/tex]

Taking LCD to subtract fractions

[tex]y=\frac{5}{9}x-\frac{20}{9}-\frac{63}{9}[/tex]

[tex]y=\frac{5}{9}x+\frac{(-20-63)}{9}[/tex]

[tex]y=\frac{5}{9}x+\frac{-83}{9}[/tex]

[tex]y=\frac{5}{9}x-\frac{83}{9}[/tex]

Thus, the equation of line in standard form is given by:

[tex]y=\frac{5}{9}x-\frac{83}{9}[/tex]