Respuesta :

Answer:

[tex]8 {m}^{2} {n}^{3} - 24 {m}^{2} {n}^{2} + 4 {m}^{3}n = 4 {m}^{2} n(2 {n}^{2} - 6n + m)[/tex]

Step-by-step explanation:

The given expresion is

[tex]8 {m}^{2} {n}^{3} - 24 {m}^{2} {n}^{2} + 4 {m}^{3}n[/tex]

Observe that 4 is common to 8,-24, and 4

Observe also that, m²n is common to all the terms.

Hence the GCF is:4m²n

We factor the GCF to get;

[tex]8 {m}^{2} {n}^{3} - 24 {m}^{2} {n}^{2} + 4 {m}^{3}n = 4 {m}^{2} n(2 {n}^{2} - 6n + m)[/tex]

Q&A Education