contestada

How would the period of a simple pendulum be affected if it were located on the moon instead of the earth?

Respuesta :

Answer:

On moon time period will become 2.45 times of the time period on earth

Explanation:

Time period of simple pendulum is equal to [tex]T=2\pi \sqrt{\frac{l}{g}}[/tex] ....eqn 1 here l is length of the pendulum and g is acceleration due to gravity on earth

As when we go to moon, acceleration due to gravity on moon is [tex]\frac{1}{6}[/tex] times os acceleration due to gravity on earth

So time period of pendulum on moon is equal to

[tex]T_{moon}=2\pi \sqrt{\frac{l}{\frac{g}{6}}}=2\pi \sqrt{\frac{6l}{g}}[/tex] --------eqn 2

Dividing eqn 2 by eqn 1

[tex]\frac{T_{moon}}{T}=\sqrt{\frac{6l}{g}\times \frac{g}{l}}[/tex]

[tex]T_{moon}=\sqrt{6}T=2.45T[/tex]

So on moon time period will become 2.45 times of the time period on earth