Answer:
a) [tex]I = 113.014\,kg\cdot m^{2}[/tex], b) [tex]m = 2075.556\,kg[/tex]
Explanation:
a) The turntable has the following physical model by using Newton's laws:
[tex]F \cdot R = I \cdot \alpha[/tex]
The moment of inertia is:
[tex]I = \frac{F\cdot R}{\alpha}[/tex]
[tex]I = \frac{(300\,N)\cdot(0.33\,m)}{0.876\,\frac{rad}{s^{2}} }[/tex]
[tex]I = 113.014\,kg\cdot m^{2}[/tex]
b) The moment of inertia for a solid cylinder:
[tex]I = \frac{1}{2}\cdot m \cdot R^{2}[/tex]
The mass of the turntable is:
[tex]m = \frac{2 \cdot I}{R^{2}}[/tex]
[tex]m = \frac{(2)\cdot (113.014\,kg\cdot m^{2})}{(0.33\,m)^{2}}[/tex]
[tex]m = 2075.556\,kg[/tex]