Respuesta :
To figure that out we will need to know the quadratic formula which is:
[tex]x=\frac{ -b \pm \sqrt{b^2-4ac} }{ 2a }[/tex]
Since we only want to know the square root part we will solve only for this part:
[tex] \sqrt{b^2-4ac} [/tex]
Now we need to list our values (a,b,c)
To determine which number belongs to which letter we use the standered form equation which is :
[tex]ax^2+bx+c[/tex]
And next part is super easy! We simply match up the numbers to the letters. We have:
a=2
b=-2
c=-1
Next we plug in the given info into the square root:
[tex] \sqrt{(-2)^2-4(2)(-1)} [/tex]
Now we solve:
[tex] \sqrt{(4-4(2)(-1)} [/tex]
[tex] \sqrt{(4-8(-1)} [/tex]
[tex] \sqrt{(4-(-8)} [/tex]
[tex] \sqrt{(12)} [/tex]
[tex] \sqrt{(12)} [/tex]
[tex] \sqrt{(12)}=3.46 [/tex]
Final answer: 3.46
[tex]x=\frac{ -b \pm \sqrt{b^2-4ac} }{ 2a }[/tex]
Since we only want to know the square root part we will solve only for this part:
[tex] \sqrt{b^2-4ac} [/tex]
Now we need to list our values (a,b,c)
To determine which number belongs to which letter we use the standered form equation which is :
[tex]ax^2+bx+c[/tex]
And next part is super easy! We simply match up the numbers to the letters. We have:
a=2
b=-2
c=-1
Next we plug in the given info into the square root:
[tex] \sqrt{(-2)^2-4(2)(-1)} [/tex]
Now we solve:
[tex] \sqrt{(4-4(2)(-1)} [/tex]
[tex] \sqrt{(4-8(-1)} [/tex]
[tex] \sqrt{(4-(-8)} [/tex]
[tex] \sqrt{(12)} [/tex]
[tex] \sqrt{(12)} [/tex]
[tex] \sqrt{(12)}=3.46 [/tex]
Final answer: 3.46
Answer:
12.
Step-by-step explanation:
[tex]2x^{2} -2x-1=0[/tex]
a= 2, b= -2 and c=-1. Then,
[tex]b^{2}-4ac = (-2)^{2}-4(2)(-1) = 4+8 = 12.[/tex]