Respuesta :
d=0.28mVғ = final speed of passenger = 0
d = stopping distance = ?
a = acceleration = - 60 • (9.8) = - 588 m/sec² ... negative value for deceleration
31ms = 0.031 sec
Vғ = (a • t) + Vi
0 = (- 588 • 0.031) + Vi
Vi = 18.228m/sec
(Vғ)² – (Vi)² = 2 • a • d
(0)² – (18.228)² = 2 • (- 588) • d
d = 0.028meters
an other way to solve
Let's see what we have here: a=60g=(60)(−9.8m/s2)=−588m/s2Δt=31ms=0.031sVf=0m/sVi=? m/sd=? m Now use the kinematic equation:Vf=Vi+at0=Vi+(−588m/s2)(.031s)Vi=18.228m/sNow that you know the initial velocity, you can calculate the distance:d=V0t+12at2=(18.228m/s2)(0.031s)+12(−588m/s2)(0.031s)2
d=0.28m
d = stopping distance = ?
a = acceleration = - 60 • (9.8) = - 588 m/sec² ... negative value for deceleration
31ms = 0.031 sec
Vғ = (a • t) + Vi
0 = (- 588 • 0.031) + Vi
Vi = 18.228m/sec
(Vғ)² – (Vi)² = 2 • a • d
(0)² – (18.228)² = 2 • (- 588) • d
d = 0.028meters
an other way to solve
Let's see what we have here: a=60g=(60)(−9.8m/s2)=−588m/s2Δt=31ms=0.031sVf=0m/sVi=? m/sd=? m Now use the kinematic equation:Vf=Vi+at0=Vi+(−588m/s2)(.031s)Vi=18.228m/sNow that you know the initial velocity, you can calculate the distance:d=V0t+12at2=(18.228m/s2)(0.031s)+12(−588m/s2)(0.031s)2
d=0.28m
Answer: 0.28 m
Deceleration, a= -60 g
where g is the acceleration due to gravity[tex]=9.8 m/s^2[/tex]
So, [tex]a= -60\times 9.8 m/s^2=-588 m/s^2[/tex]
Using the equation of motion, we need to find the initial velocity,
[tex]v-u=at[/tex]
final velocity, [tex]v=0[/tex]
time, [tex]t= 31 ms=31\times 10^{-3}s[/tex]
[tex]0-u=-588m/s^2\times 31\times 10^{-3} s=18.23 m/s [/tex]
now, using third equation of motion,
[tex]s=ut+\frac{1}{2}at^2[/tex]
we can find out the distance traveled by the person before coming to complete stop.
[tex]s=18.23m/s\times 31\times 10^{-3}s+\frac{1}{2}(-588 m/s^2) \times (31\times 10^{-3} s)^2=0.56 m-0.28 m=0.28 m[/tex]