Respuesta :
f(x) = x² + 2x - 1
f(2) = 2² + 2 · 2 - 1 = 4 + 4 - 1 = 7
f(-2) = (-2)² + 2 · (-2) - 1 = 4 - 4 - 1 = -1
f(3) = 3² + 2 · 3 - 1 = 9 + 6 - 1 = 14
f(-3) = (-3)² + 2 · (-3) - 1 = 9 - 6 - 1 = 2
The range = {-1; 2; 7; 14}
f(2) = 2² + 2 · 2 - 1 = 4 + 4 - 1 = 7
f(-2) = (-2)² + 2 · (-2) - 1 = 4 - 4 - 1 = -1
f(3) = 3² + 2 · 3 - 1 = 9 + 6 - 1 = 14
f(-3) = (-3)² + 2 · (-3) - 1 = 9 - 6 - 1 = 2
The range = {-1; 2; 7; 14}
Answer:
(2,7) , (-2,-1) , (3,14) , (-3,2)
Step-by-step explanation:
Given : Function [tex]f(x)=x^2+2x-1[/tex]
To find : Match the range of the function to its domain ?
Solution :
Domain is x and range is y,
We substitute the domain values 2, -2, 3, -3 and find y,
At x=2
[tex]f(2)=(2)^2+2(2)-1[/tex]
[tex]f(2)=4+4-1[/tex]
[tex]f(2)=7[/tex]
i.e. (2,7)
At x=-2
[tex]f(-2)=(-2)^2+2(-2)-1[/tex]
[tex]f(-2)=4-4-1[/tex]
[tex]f(-2)=-1[/tex]
i.e. (-2,-1)
At x=3
[tex]f(3)=(3)^2+2(3)-1[/tex]
[tex]f(3)=9+6-1[/tex]
[tex]f(3)=14[/tex]
i.e. (3,14)
At x=-3
[tex]f(-3)=(-3)^2+2(-3)-1[/tex]
[tex]f(-3)=9-6-1[/tex]
[tex]f(-3)=2[/tex]
i.e. (-3,2)