A liquid stream containing solute A and carrier liquid C enters a packed column. The solute is to be stripped using pure gas B. The liquid stream enters the column at a rate of 150 kmole/hr and this stream contains 7 mole % A. The stripping gas B enters at a rate of 500 kmole/hr. The design calls for 1 mole % A in the exiting liquid. For the phase equilibrium relationship use yA= 0.4XA. At the conditions of interest we have Kza = 75kmole/(hr *m3)

Determine the height of packing required for this separation if the column cross sectional area is 1m².

Respuesta :

Answer:

the height of packing required for this separation is 15.85 m

Explanation:

Given that :

liquid stream (A+C) enters a packed column which the solute is stripped by using a pure gas B

The solute flowrate [tex](L_s)[/tex] = 150 kmole/hr

Mole fraction of the solute [tex](x_2)[/tex] = 7% = 0.07

(A+C)liquid = [tex]x_1[/tex] = 0.01

Pure gas [tex](G_s)[/tex] = 500 kmole/hr

[tex]y_1 = 0[/tex]

The delivery force in the gas phase & liquid phase is expressed as:

[tex](K_x)(x_2-x_1) = k_y(y_2-y_1)[/tex]

Given that [tex](K_x)_a[/tex] = 75 kmole/hr mÂł and equilibrium relationship [tex]y_A = 0.4x_A[/tex]

Then :

[tex]K_{xa}(x_2-x_1) = (k_y)_a(y_2-y_1)[/tex]

[tex]75(0.07-0.01)=(k_y)_a(y_2-0)[/tex]

where ;

[tex]y_2 = 0.4x_2[/tex]

= 0.4(0.07)

= 0.028

[tex]75(0.06)=(k_y)_a(0.028)[/tex]

[tex](k_y)_a = \frac{4.5}{0.028}[/tex]

[tex](ky)_a = 160.71 \ kmol/hr.m^3[/tex]

NOW; the overall mass transfer coefficient on the liquid phase is :-

[tex]\frac{1}{(K_{ox})_a} = \frac{1}{(K_x)_a}+ \frac{1}{m(K_y)_a}[/tex]

where m= slope = 0.4

[tex]\frac{1}{(K_{ox})_a} = \frac{1}{75}+ \frac{1}{0.4(160.71)}[/tex]

[tex]{(K_{ox})_a} = 34.61 \ kmol/hr.m^3[/tex]

Finally; the height of the tower (z) is = [tex](HTU)_{oL}(NTU)_{oL}[/tex]

[tex](HTU)_{oL} = \frac{\frac{L_s}{s} }{(K_{ox})_a}[/tex]

where :

s = 1m²

[tex]L_s[/tex] = 150 kmol/hr

[tex](HTU)_{oL} = \frac{\frac{150}{1} }{34.61}[/tex] = 4.33 m

[tex](NTU)_{oL} = e^x [\frac{(\frac{x_2-\frac{y_1}{m} }{x_1-\frac{y_1}{m} })(1-A)+A }{1-A} ][/tex]

where A  = [tex]\frac{L_s}{G_s *m}[/tex] = [tex]\frac{150}{500(0.4)}[/tex]

= 0.75

Then:

[tex](NTU)_{oL} = e^x [\frac{(\frac{0.07-0 }{0.01-0 })(1-0.75)+0.75 }{1-0.75} ][/tex]

[tex](NTU)_{oL} =3.66 \ m[/tex]

the height of the tower (z) is = [tex](HTU)_{oL}(NTU)_{oL}[/tex]

= (4.33)(3.66)

=15.85 m

Thus, the height of packing required for this separation is 15.85 m

Q&A Education