Respuesta :

Answer:

(-∞, ⅓) ⋃ (⅓, 2) ⋃ (2, ∞)

Step-by-step explanation:

f(x) = 4 / (x − 2)

g(x) = 5 / (3x − 1)

The domain of f(x) is x ≠ 2, or (-∞, 2) ⋃ (2, ∞).

The domain of g(x) is x ≠ ⅓, or (-∞, ⅓) ⋃ (⅓, ∞).

Therefore, the domain of f(g(x)) is the overlap:

x ≠ ⅓ or 2, or (-∞, ⅓) ⋃ (⅓, 2) ⋃ (2, ∞).

The domain of a function is the set of input values, the function can take

The domain of [tex]\mathbf{f \circ g}[/tex] as a union of interval is: [tex]\mathbf{(-\infty, \frac 13)\ u\ (\frac 13, 2)\ u\ (2, \infty)}[/tex]

The functions are given as:

[tex]\mathbf{f(y) = \frac{4}{y - 2}}[/tex]

[tex]\mathbf{g(x) = \frac{5}{3x - 1}}[/tex]

Substitute x for y in f(y)

[tex]\mathbf{f(x) = \frac{4}{x - 2}}[/tex]

The domains of f(x) and g(x) will be the domain of [tex]\mathbf{f \circ g}[/tex]

Set the denominator of [tex]\mathbf{f(x) = \frac{4}{x - 2}}[/tex] to 0

[tex]\mathbf{x - 2 = 0}[/tex]

Solve for x

[tex]\mathbf{x = 2}[/tex]

So, the domain of f(x) is:

[tex]\mathbf{x \ne 2}[/tex]

Set the denominator of [tex]\mathbf{g(x) = \frac{5}{3x - 1}}[/tex] to 0

[tex]\mathbf{3x - 1 = 0}[/tex]

Solve for x

[tex]\mathbf{3x = 1}[/tex]

[tex]\mathbf{x = \frac 13}[/tex]

So, the domain of g(x) is:

[tex]\mathbf{x \ne \frac 13}[/tex]

At this stage, we have:

[tex]\mathbf{x \ne \frac 13}[/tex] and [tex]\mathbf{x \ne 2}[/tex]

This means that:

[tex]\mathbf{f \circ g}[/tex] can take

  • Any value less than 1/3
  • Any value between 1/3 and 2
  • Any value above 2

So, the domain of [tex]\mathbf{f \circ g}[/tex] as a union of interval is:

[tex]\mathbf{(-\infty, \frac 13)\ u\ (\frac 13, 2)\ u\ (2, \infty)}[/tex]

Read more about function domains at:

https://brainly.com/question/16875632

Q&A Education