Answer:
B = 0.036 T
Explanation:
Given:
[tex]m = 6.64*10^-^2^7[/tex]
p.d, Va= 1.8 KV = 1800V
Distance btw plates, d= 8mm = 0.008m
[tex]q = 2 * 1.6*10^-^1^9[/tex]
Let's use the equation:
[tex] q*Va = \frac{1}{2} mv^2 [/tex]
Substitute figures in the equation, we have:
[tex] 2*1.6*10^-^1^9 * 1800 = \frac{1}{2} * 6.64*10^-^2^7 * v'^2 [/tex]
Solving for v' we have:
[tex] v' = 41.65 * 10^4 [/tex]
For electric field between plates, we use the formula :
[tex] E = \frac{V}{d} [/tex]
Where V = 120
[tex] E = \frac{120}{0.008} [/tex]
[tex] 15*10^3 N/C [/tex]
The magnitude of magnetic field, B, needed so that the alpha particles emerge undeflected will be given as:
[tex] B = \frac{E}{v'} [/tex]
[tex] B = \frac{15*10^3}{41.65*10^4} [/tex]
B = 0.036 T