Respuesta :
Answer:
1) The linear regression model is y = -0.0348·x + 13.989
2) The correlation coefficient is -0.0725
3) The strength of the model is strong - association
Step-by-step explanation:
1)
             X       Y      XY    X²
             27       13      351      729
             65       12      780     4225
             83        11      913     6889
             109       10      1090    11881
             142       9       1278   20164
             175        8       1400    30625
        ∑    601        63 5812 74513
From y = ax + b, we have
[tex]a = \frac{n\sum xy - \sum x\sum y }{n\sum x^{2}-\left (\sum x \right )^{2}} = \frac{6 \times 5812 - 601 \times 63}{6 \times 74513-601^{2}} = - 0.0348[/tex]
b = 1/n(∑y -a∑x) = 1/6(63 - (0.0348)×601) = 13.989
Therefore, the linear regression model is y = -0.0348·x + 13.989
2)
[tex]r = \frac{n\sum xy - \sum x\sum y }{\sqrt{[n\sum x^{2}-\left (\sum x \right )^{2}] [n\sum y^{2}-\left (\sum y \right )^{2}]}} = \frac{6 \times 5812 - 601 \times 63}{\sqrt{[6 \times 74513-601^{2}] [6 \times 3969 - 63^2]} } = - 0.0725[/tex]
3) The strength is - association.
Answer:
linear regression answer : y = -0.035x + 13.989
correlation coefficient : -0.996
strength : strong negative
Step-by-step explanation:
trust me bro i know its right