Answer:
[tex]1.2\times 10^{2}[/tex] mmol of [tex]NH_{3}[/tex] is left after 20 s.
Explanation:
Initial concentration of [tex]NH_{3}[/tex] = [tex]\frac{150\times 10^{-3}}{450}\times 10^{3}[/tex] M = 0.333 M
The integrated rate law for the given zero order reaction:
               [tex][NH_{3}]=-kt+[NH_{3}]_{0}[/tex]
where, [tex][NH_{3}][/tex] represents concentration of [tex]NH_{3}[/tex] after "t" time, k is rate constant and [tex][NH_{3}]_{0}[/tex] is initial concentration of [tex]NH_{3}[/tex].
Here, k = 0.0038 M/s, [tex][NH_{3}]_{0}[/tex] = 0.333 M and t = 20 s
So, [tex][NH_{3}]=(-0.0038M.s^{-1}\times 20s)+0.333M[/tex]
  or, [tex][NH_{3}][/tex] = 0.257 M
So, number of mol of [tex]NH_{3}[/tex] left after 20 s = [tex]\frac{0.257}{1000}\times 450[/tex] mol = 0.11565 mol
So, number of mmol of [tex]NH_{3}[/tex] left after 20 s = 115.65 mmol = [tex]1.2\times 10^{2}[/tex] mmol (2 sig. digits)