Answer:
Explanation:
Using conservation of mechanical energy for rotational motion of chimney
gain of rotational KE = loss of potential energy
1/2 Iω² = mgl/2 ( 1 - cosθ )  ; I is moment of inertia , ω is angular velocity , m is mass of chilney , l is its length .
I = 1/3 m l²
1/6 m l²ω²= mgl/2 ( 1 - cosθ )
1/6 m v² = mgl/2 ( 1 - cosθ )
v² = 3gl( 1 - cosθ )
radial acceleration at the top = v² / r
=3gl( 1 - cosθ ) / l
= 3g ( 1 - cosθ )
= 3 x 9.8 ( 1 - cos 30.2 )
= 4 m / s²
b ) Let angular  acceleration be α .
Torque acting at that time
mgsinθ x l /2 = I  α
mgsinθ x l /2 = 1/3 m l²  α
α  = 3g sinθ / 2l
tangential acceleration
α x l = 3gsinθ / 2
= 3 x 9.8 sin 30.2 / 2
= 7.4 m /s²
c ) tangential acceleration equal to g
3gsinθ / 2  = g
sinθ = 2 / 3
42 degree .