Answer:
CosĪø = 0.5145
SinĪø = 0.8575
SecĪø = 1.9436
tanĪø = 1.667
Step-by-step explanation:
From the figure attached,
Point P(-3, 5) is on the terminal side and AB is the initial side of the angle PAB.
If mā PAB = Īø
AB = [tex]\sqrt{(3)^{2}+(5)^{2}}[/tex]
Ā Ā Ā = [tex]\sqrt{34}[/tex]
Ā Ā Ā = 5.831
Then CosĪø = [tex]\frac{AB}{AP}[/tex] = [tex]\frac{3}{5.831}[/tex]
CosĪø = 0.5145
SinĪø = [tex]\frac{PB}{AP}[/tex]
SinĪø = [tex]\frac{5}{5.831}[/tex]
SinĪø = 0.8575
SecĪø = [tex]\frac{1}{\text{Cos}\theta}[/tex]
SecĪø = [tex]\frac{1}{0.5145}[/tex]
SecĪø = 1.944
tanĪø = [tex]\frac{PB}{AB}[/tex]
tanĪø = [tex]\frac{5}{3}[/tex]
tanĪø = 1.667