Answer:[tex]60^{\circ}[/tex]
Explanation:
Given
[tex]\mid\Vec{A}\mid=1[/tex]
[tex]\mid\Vec{B}\mid=2[/tex]
And [tex]A\cdot B=1[/tex]
We know [tex]\vec{A}\cdot \vec{B}=\mid\Vec{A}\mid\mid\Vec{B}\mid\cos \theta[/tex]
Where [tex]\theta[/tex] is the angle between them
Substituting the values
[tex]1=1\times 2\cos \theta[/tex]
[tex]\cos \theta =\dfrac{1}{2}[/tex]
[tex]\theta =60^{\circ}[/tex]
Thus the angle between [tex]A[/tex] and [tex]B[/tex] is [tex]60^{\circ}[/tex]