A light beam has a wavelength of 330 nm in a material of refractive index 1.50. In a material of refractive index 2.50, its wavelength will be In a material of refractive index 2.50, its wavelength will be:_________
a. 495 nm .
b. 330 nm .
c. 220 nm .
d. 198 nm .
e. 132 nm .

Respuesta :

Answer:

The wavelength of the ligt beam in a material of refractive index 2.50 is 198 mm

d. 198 mm

Explanation:

Refractive index is given by;

[tex]\mu= \frac{\lambda_{vacuum}}{\lambda _{medium}}[/tex]

where;

[tex]\lambda_{vacuum}[/tex] is the wavelength of the light beam in vacuum

[tex]\lambda_{medium}[/tex] is the wavelength of the beam in a material

[tex]\mu= \frac{\lambda_{vacuum}}{\lambda _{medium}} \\\\\lambda_{vacuum} = \mu *\lambda _{medium}\\\\\ the \ wavelength \ of \ the \ light \ beam \ is \ constant \ in \ a \ vacuum\\\\ \mu_1 *\lambda _{medium}_1 = \mu_2 *\lambda _{medium}_2\\\\\lambda _{medium}_2 = \frac{ \mu_1 *\lambda _{medium}_1 }{ \mu_2} \\\\\lambda _{medium}_2 =\frac{1.5*330}{2.5} \\\\\lambda _{medium}_2 = 198 \ mm[/tex]

Therefore, the wavelength of the ligt beam in a material of refractive index 2.50 is 198 mm.

d. 198 mm

Q&A Education