Answer:
The wavelength of the ligt beam in a material of refractive index 2.50 is 198 mm
d. 198 mm
Explanation:
Refractive index is given by;
[tex]\mu= \frac{\lambda_{vacuum}}{\lambda _{medium}}[/tex]
where;
[tex]\lambda_{vacuum}[/tex] is the wavelength of the light beam in vacuum
[tex]\lambda_{medium}[/tex] is the wavelength of the beam in a material
[tex]\mu= \frac{\lambda_{vacuum}}{\lambda _{medium}} \\\\\lambda_{vacuum} = \mu *\lambda _{medium}\\\\\ the \ wavelength \ of \ the \ light \ beam \ is \ constant \ in \ a \ vacuum\\\\ \mu_1 *\lambda _{medium}_1 = \mu_2 *\lambda _{medium}_2\\\\\lambda _{medium}_2 = \frac{ \mu_1 *\lambda _{medium}_1 }{ \mu_2} \\\\\lambda _{medium}_2 =\frac{1.5*330}{2.5} \\\\\lambda _{medium}_2 = 198 \ mm[/tex]
Therefore, the wavelength of the ligt beam in a material of refractive index 2.50 is 198 mm.
d. 198 mm