Simplify

[tex] \frac{7xy}{ {x}^{2} - 4x + 4 } \div \frac{14y}{ {x}^{2} - 4} [/tex]
I will mark it as the brainliest please answer this question​

Respuesta :

Answer:

The answer is

[tex] \frac{ {x}^{2} + 2x}{2x - 4 } [/tex]

Step-by-step explanation:

[tex] \frac{7xy}{ {x}^{2} - 4x + 4 } \div \frac{14y}{x^{2} - 4} [/tex]

To simplify , factorize

x² - 4x + 4 and x² - 4

For x² - 4x + 4

Write - 4x as a difference

x² - 2x - 2x + 4

x( x - 2) - 2(x - 2)

(x - 2)(x - 2)

For x² - 4

use the formula

a² - b² = ( a+b)( a - b)

That's

x² - 4 = (x + 2)(x - 2)

So now we have

[tex] \frac{7xy}{(x - 2)(x - 2)} \div \frac{14y}{(x + 2)(x - 2)} [/tex]

Change the division sign to multiplication sign and reverse the second fraction

That's

[tex] \frac{7xy}{(x - 2)(x - 2)} \times \frac{(x + 2)(x - 2)}{14y} [/tex]

Simplify

We have

[tex] \frac{x}{(x - 2)(x - 2)} \times \frac{(x + 2)(x - 2)}{2} [/tex]

Reduce the expression with x + 2

That's

[tex] \frac{x}{x - 2} \times \frac{x + 2}{2} [/tex]

Multiply the fractions

[tex] \frac{x(x + 2)}{2(x - 2)} [/tex]

We have the final answer as

[tex] \frac{ {x}^{2} + 2x }{2x - 4} [/tex]

Hope this helps you

Q&A Education