Respuesta :

Answer:

[tex]3 + 3^2 + 3^3 ...+ 3^n = \frac{3(3^n - 1)}{2}[/tex]

Step-by-step explanation:

Given

[tex]3 + 3^2 + 3^3 ...+ 3^n[/tex]

Required

Show that the sum of the series is [tex]\frac{3(3^{n}-1)}{2}[/tex]

The above shows the sum of a geometric series and this will be calculated as shown below;

[tex]S_n = \frac{a(r^n - 1)}{r - 1}[/tex]

Where

a = First term;

[tex]a = 3[/tex]

r = common ratio

[tex]r = \frac{3^2}{3} = \frac{3^3}{3^2}[/tex]

[tex]r = 3[/tex]

Substitute 3 for r and 3 for a in the formula above;

[tex]S_n = \frac{a(r^n - 1)}{r - 1}[/tex] becomes

[tex]S_n = \frac{3(3^n - 1)}{3 - 1}[/tex]

[tex]S_n = \frac{3(3^n - 1)}{2}[/tex]

Hence;

[tex]3 + 3^2 + 3^3 ...+ 3^n = \frac{3(3^n - 1)}{2}[/tex]

12 5 that is the answer for your question
Q&A Education