Evaluate C 3y − esin(x) dx + 7x + y4 + 1 dy, where C is the circle x2 + y2 = 16. SOLUTION The region D bounded by C is the disk x2 + y2 ≤ 16, so let's change to polar coordinates after applying Green's Theorem: C 3y − esin(x) dx + 7x + y4 + 1 dy

Respuesta :

By Green's theorem,

[tex]\displaystyle\int_{x^2+y^2=16}(3y-e^{\sin x})\,\mathrm dx+(7x+y^4+1)\,\mathrm dy[/tex]

[tex]=\displaystyle\iint_{x^2+y^2\le16}\frac{\partial(7x+y^4+1)}{\partial x}-\frac{\partial(3y-e^{\sin x})}{\partial y}\,\mathrm dx\,\mathrm dy[/tex]

[tex]=\displaystyle4\iint_{x^2+y^2\le16}\mathrm dx\,\mathrm dy[/tex]

The remaining integral is just the area of the circle; its radius is 4, so it has an area of 16Ï€, and the value of the integral is 64Ï€.

We'll verify this by actually computing the integral. Convert to polar coordinates, setting

[tex]\begin{cases}x=r\cos\theta\\y=r\sin\theta\end{cases}\implies\mathrm dx\,\mathrm dy=r\,\mathrm dr\,\mathrm d\theta[/tex]

The interior of the circle is the set

[tex]\{(r,\theta)\mid0\le r\le4\land0\le\theta\le2\pi\}[/tex]

So we have

[tex]\displaystyle4\iint_{x^2+y^2\le16}\mathrm dx\,\mathrm dy=4\int_0^{2\pi}\int_0^4r\,\mathrm dr\,\mathrm d\theta=8\pi\int_0^4r\,\mathrm dr=64\pi[/tex]

as expected.

Q&A Education